Category Archives: PSAMS

MAINS: Marginal Adjusted Inside Scoring (Or Why I Feel Pretty Good About Andrew "If He's Healthy" Bogut)

You may already be familiar with my marginal scoring metric, PSAMS (if not, see here). The basic idea with that metric is that I try to take into account the volume and type of shots (inside, mid-range, 3-pt, and free throws) for each player and calculate an "adjusted" scoring metric. For example, I give more credit to players who generate a high volume of inside shots and debit players who don't. I take into account the fact that some players are responsible for taking more than their fair share of mid-range shots (which tend to be lower efficiency), while others  take less, thus placing the burden of taking those bad shots on their teammates. And so on... Continue reading

I can live with or without you shooting those mid-range jumpers

U2?

This is going to be a data-intensive post. So strap in, buckle up, put on your helmets, and let's do some stats. By now, you're probably aware of my PSAMS scoring metric, which adjusts for shot volume and location (roughly speaking) according to position. In terms of shot locations, I keep track of four categories: INSIDE (dunk, layups, tips, and hooks), 3PT, FT (including And1), and MID-RANGE (all jumpers that are not classified INS or 3PT).

An interesting question to ask is how does a particular player's shot selection affect the team level shot distribution? (And maybe vice-versa, right?) To begin to address this issue, I've added a new wrinkle to my play-by-play code that enables me to do ON/OFF (also called "With or Without You" or WOWY) tracking of team-level stats. In other words, when Player X is on the floor, what is the distribution of INSIDE, 3-PT, MID-RANGE, and FT shooting? How does it change when he is off the floor? I can answer that now. Continue reading

Rookie Update: PSAMS Ratings

I wanted to take a quick look at rookie scoring through my PSAMS metric. There are 18 rookies with at least 500 possessions, which was my cutoff. Unfortunately,  I only have the first 510 possessions for MarShon Brooks, because there have been issues with the matchup files that I use the past several weeks. I contacted Aaron B. who runs basketball-value.com and is the source of all the play-by-play data that I use, and he explained that all the lineups containing Shawne and Shelden Williams in NJN are wreaking havoc. He has to go in manually and do the matchup files for those games, and it's going to take him a while to fix them all. So, for now, Brooks is at the top. I expect he's probably still somewhere up there, but just keep in mind, the data for him are limited to what he did the first few weeks of the season. Continue reading

Initial PSAMS Update for 2012

(Click here and follow back-links to read up on PSAMS methodology.)

I've updated the data in the PSAMS page. Click there to see the full set of stats, including rates and %'s for each shot type, in addition to the actual number made and attempted for each shot type (Hint: You could use those data to figure out who has dunked the most so far this season!). Here are the top 25 as of Jan. 12:

Top 25 PSAMS

Among players with minimum 300 possessions played. The column labeled MOD is the PSAMS rating regressed onto RAPM, as discussed here.

Conspicuous by his absence on this list is Kevin Martin who comes in at #54. His FT component is at 1.10, compared to a gaudy 4.14 last season. I've got to believe it's the new "rip through" rule taking effect. Job well done, NBA rules makers. Andrea Bargnani has surged into the top 5 with a great mid-range rating. Marcin Gortat is also breaking out with a combination of inside and mid-range scoring. The top 25 list is full of young players moving in (Greg Monroe the only viable scoring option on a bad Pistons team, Spencer Hawes playing out of his mind, Brandon Bass with a change of scenery, Byron Mullens(?!), Mario Chalmers literally on fire, rookies Irving and Morris, and James Harden who is becoming the second best scoring option for OKC). I expect this list to change quite a bit as hot players regress and other veterans make it back.

RK NAME TEAM POS POSS GS PSAMS MOD INS MID 3PT FT
1  LeBron James MIA 3.11 660 9 7.03 2.79 4.84 1.25 -0.91 1.85
2  Ray Allen BOS 2.12 459 8 6.74 4.31 -0.44 0.43 5.82 0.92
3  Kobe Bryant LAL 2.03 849 12 6.69 3.36 1.04 5.82 -2.85 2.67
4  Kevin Durant OKC 3.20 770 13 6.60 3.71 0.40 3.19 0.85 2.16
5  Andrea Bargnani TOR 4.92 712 11 6.18 3.36 0.54 3.80 -0.26 2.10
6  Marcin Gortat PHX 5.00 530 10 5.29 2.44 2.18 3.60 -0.09 -0.40
7  Dirk Nowitzki DAL 4.11 671 11 5.23 3.04 -0.58 4.24 -1.25 2.82
8  Chris Paul LAC 1.00 542 9 4.25 2.35 0.29 3.43 0.46 0.07
9  Greg Monroe DET 5.00 636 11 4.20 1.48 3.79 -0.44 -0.09 0.94
10  Carmelo Anthony NYK 3.04 722 12 4.16 2.21 1.12 -0.97 1.04 2.97
11  Richard Jefferson SAS 3.16 642 11 4.15 3.06 -1.12 -0.83 6.85 -0.75
12  Spencer Hawes PHI 5.00 498 9 4.12 1.77 2.10 2.97 -0.54 -0.41
13  Brandon Bass BOS 4.13 401 0 3.97 2.56 -1.44 5.24 -0.17 0.34
14  Mario Chalmers MIA 1.06 541 10 3.97 2.11 1.45 -0.53 3.10 -0.05
15  Paul Millsap UTA 4.02 533 8 3.89 1.93 0.99 3.41 -0.22 -0.29
16  Luke Ridnour MIN 1.44 568 10 3.84 2.30 -0.40 3.67 0.85 -0.28
17  Kyrie Irving CLE 1.00 516 10 3.84 2.28 -0.26 2.18 0.55 1.37
18  Markieff Morris PHX 4.08 404 0 3.81 2.67 -0.85 0.03 4.63 0.01
19  Steve Nash PHX 1.00 578 10 3.50 1.81 0.79 2.63 0.49 -0.41
20  Byron Mullens CHA 5.00 423 1 3.42 1.81 0.53 1.25 -0.27 1.90
21  Al Horford ATL 4.97 538 10 3.37 1.58 1.34 1.06 -0.23 1.21
22  Caron Butler LAC 3.01 515 8 3.20 1.96 -0.41 2.20 0.82 0.59
23  Pau Gasol LAL 4.56 850 12 3.12 1.67 0.36 2.27 -0.09 0.57
24  Jose Calderon TOR 1.00 703 11 2.99 1.55 0.74 1.79 0.68 -0.22
25  James Harden OKC 2.44 624 1 2.94 1.31 1.87 -2.54 0.45 3.15

And as always, where there's a "Top 25", a "Bottom 25" list surely follows. Here it is:

Bottom 25 PSAMS

It's surprising to see Odom, Felton, and Wright (who's been mostly miserable this  season) on the list, but the other names are the usual suspects, for the most part.

RK NAME TEAM POS POSS GS PSAMS MOD INS MID 3PT FT
226  Rasual Butler TOR 2.96 393 11 -7.53 -4.18 -1.24 -2.34 -3.23 -0.73
225  Shane Battier MIA 2.45 402 1 -7.00 -3.75 -1.36 -2.48 -1.61 -1.55
224  Lamar Odom DAL 3.56 414 0 -6.88 -3.77 -1.42 -2.08 -3.39 -0.00
223  C.J. Miles UTA 2.20 333 0 -6.57 -3.71 -0.05 -5.66 -0.45 -0.40
222  Andray Blatche WAS 4.39 465 8 -6.17 -3.29 -0.90 -4.10 -0.30 -0.88
221  Toney Douglas NYK 1.11 529 7 -5.66 -3.31 -0.07 -2.84 -1.93 -0.81
220  James Johnson TOR 3.23 492 0 -5.21 -2.44 -2.03 -2.33 0.37 -1.22
219  Marcus Camby POR 5.00 459 10 -5.13 -2.34 -2.37 -2.13 -0.09 -0.54
218  Jordan Crawford WAS 1.80 368 2 -5.13 -2.79 -0.99 -2.05 -2.09 -0.00
217  Michael Beasley MIN 3.00 435 7 -4.88 -3.03 1.24 -5.27 0.34 -1.18
216  Grant Hill PHX 2.13 479 10 -4.84 -2.71 -0.74 -2.14 -2.54 0.58
215  John Wall WAS 1.00 651 10 -4.83 -2.54 -0.99 -3.22 -0.95 0.33
214  Wesley Johnson MIN 2.31 380 10 -4.74 -2.68 -0.60 -0.81 -1.74 -1.60
213  Darko Milicic MIN 5.00 354 10 -4.73 -2.20 -2.00 -1.93 -0.09 -0.69
212  Omer Asik CHI 5.00 412 0 -4.67 -2.16 -2.07 -1.60 -0.09 -0.90
211  Metta World Peace LAL 3.23 472 0 -4.66 -2.84 -0.19 -0.69 -3.86 0.07
210  Jason Kidd DAL 1.00 447 8 -4.62 -2.33 -1.09 -2.88 0.41 -1.06
209  Jeremy Pargo MEM 1.02 322 3 -4.43 -2.92 1.10 -2.55 -2.24 -0.74
208  Dorell Wright GSW 3.16 510 9 -4.39 -2.45 -0.36 -2.54 -0.74 -0.74
207  Landry Fields NYK 2.06 612 11 -4.19 -2.69 0.81 -2.02 -1.77 -1.21
206  Raymond Felton POR 1.00 655 10 -4.12 -2.13 -1.48 -0.47 -2.34 0.17
205  Tayshaun Prince DET 2.95 628 11 -4.02 -1.96 -1.26 -2.34 0.17 -0.59
204  Josh Harrellson NYK 4.44 429 3 -3.98 -1.87 -1.58 -1.84 0.20 -0.77
203  James Anderson SAS 2.42 320 1 -3.91 -2.50 0.61 -2.05 -2.34 -0.12
202  Andrew Bogut MIL 5.00 386 6 -3.76 -1.43 -2.93 -0.75 -0.09 0.02

PSAMS Regressed on ORAPM: A New Variant of Statistical +/- for Offense

One form of +/- that I didn't mention in my Advanced Stats Primer (but which will be included in a future update) is statistical +/- (SPM). I know, you're thinking, isn't +/- already "statistical"? Yes, but in the land of jargon, even jargon begets its own jargon. SPM essentially is a model created by regressing simple or advanced box score stats (see here and here for current examples) onto some form of adjusted +/- (APM or RAPM).

In the past I looked into the correlation between the offensive components of 3-yr RAPM and ezPM, and found that the results were statistically significant and fairly high (R^2=0.32). Here, I took the individual components of my PSAMS (Position- and Shot-Adjusted Marginal Scoring) metric for 2011, and regressed those onto Jeremias Engelmann's 2011 ORAPM data set. Continue reading

Stat-o-Graphic: Player Similarities by PSAMS

Moving right along with this visualization kick I'm on, I came upon a very simple way to graphically represent a distance function using R. That sounds mathy, I know, but essentially what it means is that we can plot players on a two-dimensional space (x vs. y) with the distance between each player representing their similarity in terms of one or more metrics. Players that appear closer together are more similar, while those farther apart or more different. It's pretty intuitive once you see it on the plot. Continue reading